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Diversity in liquid supercooling and glass formation phenomena illustrated by a simple model

Daniela Kohefi and Frank H. Stillinger
Bell Laboratories, Lucent Technologies Inc., 600 Mountain Avenue, Murray Hill, New Jersey 07974
(Received 12 October 1998

The opportunity to map condensed-phase inherent strucfpoésntial energy minimaapproximately onto
the vertices of a high-dimensional hypercube provides simple conceptual and numerical modeling for first-
order melting-freezing transitions, as well as for liquid supercooling and glass formation phenomena. That
approach is illustrated here by examination of three interaction examples that were selected to demonstrate the
diversity of thermodynamic behavior possible within this hypercube modeling technique. Two of the cases
behave, respectively, as “strong” and “fragile” glass formers, at least as judged by their heat capacities. The
third presents a “degenerate glass,” wherein full equilibration of the supercooling ligeidno kinetic arregt
leads to(a) residual entropy in the limit of absolute zero temperature,(Bhd linear temperature dependence
of heat capacity in the same limit. None of the three cases displays a positive-temperatuiatiiiesit) glass
transition.

PACS numbg(s): 64.60.My, 05.90+m, 61.90:+d, 82.20.Wt

I. INTRODUCTION narrow glass transition regidri.0].
Brief presentations of motivation and implementation for
Substances that readily supercool as liquids below theithe hypercube model have appeared previoligl§], but the
equilibrium melting temperatures, and rigidify to form following Sec. Il revisits that background in a somewhat
glasses upon further cooling, constitute a chemically veryifferent form, for clarity and completeness. Section IlI in-
broad groud1,2]. As a result, their physical properties, both troduces three alternative choices for interactions that oper-
static and dynamic, present a wide range of behai8fs  ate in the model, chosen to illustrate strong, fragile, and “de-
This diversity continues to generate challenges to basic regenerate glass” behavior, respectively. The last of these is
search on glass-forming materials, while at the same tim@ot ysually considered in discussions of glass properties, but
offering many opportunities for technological application jts |ow-temperature residual entropy acldssicallinear heat
[4-6]. ) . capacity merit examination. Section IV presents detailed nu-
Because so many different molecular structures and intefyarica| results for each of the three cases. Section V offers

actlons' can be mvollved, Itis d'ff'cu'_t to construct a purelly some conclusions and raises some general issues that deserve
theoretical explanation of supercooling and glass format'or?urther study in the future

that is both universally applicable and quantitatively predic-
tive. Nevertheless, it is reasonable to expect that some theo-
retical approaches and/or models might attain some limited
insights[3]. The present work is offered in this latter spirit; it

is devoted to the further development of a previously intro- ¢ present study focuses on the mechanically stable con-

duced “hypercube” modef7,8] to show that it is capable of i rations of the particlegatoms, ions, moleculgsin a

@maging glass diversity while raising some other conceptuabense glass-forming substance. These are local minima of
issues.

. . the potential energy function that comprises all interactions
On the phenomenological side, Angell has advocated P 9y P

. 2 ! the many-particle system, and have been called “inherent
particularly useful classification scheme for glass-forming

substances that arrays them between “strong” and “frag”e,,structures [11-14. These distinguished configurations

extremeg9]. The initial distinguishing feature in this scheme form a discrete set; any other configuration can be resolved

is the curvature of the Arrhenius plot of the logarithm of mto_ an inherent s_tructure and an intrab_asin vibrat?onal_ dis-
shear viscosity versus inverse temperature: the strong efortion[15,16. An important technical point to bear in mind
treme shows none, the fragile extreme shows a substantit that the potential energy function and its inherent struc-
amount. The heat capacity behavior could as well have beelires depend upon whether constant volume or constant pres-
used for the same classification, since strong mate(saish ~ sure conditions apply17].
as SiQ) display virtually no change in heat capacity upon Suppose the glass-forming system of interest contains
cooling through the glass transition temperature, while fragparticle species, present respectively in numieérs...,N,, .
ile materials(such as ortho-terphenypresent a sudden large Any one inherent structure is substantially equivalent to
drop in heat capacity as the temperature declines through theany others that differ only by permutation of positions of
identical particles. It has been establisiHd®] that under
constant pressure or constant number density conditions, the
*Present address: Department of Chemistry, University of Calidlarge-system-limit behavior of the total number of inherent
fornia at Irvine, Irvine, CA 92717. structures(}, exhibits the following asymptotic form:

Il. HYPERCUBE MAPPING
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feature of liquid supercooling and glass formation. Postulat- N/ N\
. . . . . T T
ing an approximate isomorphism between the ei{)(dis- N/
tinguishable inherent structures and the vertices of a A

D-(élmen8|gpal rrllypercube offersda S'mgl'fymg f'r:St stepbln fFIG. 1. Pattern of plane-projected vertex positions for ihe
understanding that temperature dependence. The number Ohy hypercube. The integers shown at tRe=84 positions are the

hypercube vertices, "2 must equal the number of distin- respective degeneracies, the numbers of hypercube vertices that
guishable inherent structures, so project to the same position.

D=(alln2)N. 2.3 Without incurring any significant loss of generality or er-
ror in the intensive quantities to be calculated below, it will
e convenient to suppose thatis an even integer. Then it is
ossible to select a pair of unit vectorg,and 7, from the
Iset(2.4) with the orthogonality property

Thus the hypercube dimension scales linearly withas
does the dimension of the original configuration space for thg
N-particle system. P
Euclidean coordinate locations for hypercube vertices wil
be assigned by the following unit vectdrs, 8. 7 7,=0. 2.7
7=D VAx1x1x1,.. 1) 2.4 This merely requires th&2/2 of the components of, and,
agree, while the remainin®/2 components differ in sign.
The entire collection of 2 hypercube vertices can then be

projected into thex,y) plane defined byr, and 7, with po-

Each vertex has exactlp first neighbors whose locations
differ by sign change of just one of tHe entries in expres-
sion (2.4). The distance between first neighbors B 22

More generally, each vertex has sitions
DI X=7 7y,
—_— (2.5 (2.8
| — | —
n(D n) y_’T‘ Ty'
nth neighbors (i&n=<D), all at distance These plane-projected positions all fall on or within the
2 square
2(n/D)"=, (2.6
. . . . . . Ix+y[<1,
The approximate isomorphism envisaged is not unique. 2.9
Ideally, pairs of inherent structure configurations that are Ix—y|=1. ’

close in the original configuration space should map onto

pairs of neighboring hypercube vertices. In particular, basins The pattern of projected vertex locations involves a regu-
in the original space that share a common boundary shouldar array of ©/2+ 1)? points, far less than the total number
to the extent possible, map onto nearest neighbor verticesf vertices wherD (i.e., N) is large. Consequently, most of
Typically, basins will contact on the order bfother basins, the locations host a large number of vertices. This character-
and on account of Eq2.3) the number of hypercube vertex istic is illustrated by Fig. 1, which explicitly displays the
nearest neighbors is also proportionalNp as required. It positions and multiplicities in thé, y) plane for the specific
will be assumed in the following that the isomorphism hascaseD =14. Only the four hypercube vertices ats, and
been selected so as to preserve these neighbor relationshipsr, do not share positionfgthey are at the four corners of
in an optimal fashion. Among other attributes this impliesthe squarg2.9)].

that the potential energies of inherent structures that become In the large system limit, wittN and D increasing to
nearest hypercube neighbors, although a¢N) quantities, infinity, the set of projected positions becomes dense in
differ only by O(1). square(2.9). As a result of simple combinatorial consider-
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ations[7] it is straightforward to show that the multiplicity at expected to appear at distinct locations in the bdzjg)

positionx,y has the asymptotic form ejdpw(x,y)], where square regiori2.9), and indeed in the following Sec. IV this
will be seen to occur.
w(x,y)=In2—3[(1+x+y)In(1+x+y) An exploration of several reasonable forms for the poten-

tial energy functiong(x,y), in conjunction with the combi-

F(1+x=Y)In(1+x=y) F(1=x+Y)IN(A=X+Y)  atorial entropy quantity(x,y), Eq.(2.10, shows that the
+(1-x-y)In(L—x—y)]. (2.10  hypercube model has the capacity to exhibit first-order melt-
ing, and a substantial variety of liquid supercooling behav-

The selection of basis vectorg and, is not unique. The  10rS. Two examples have been reported eaflfe8], both of
number Of possibi"ties rises rap|d|y W|th increasim One Wh|Ch Could be ClaSSIerd as thermodynam|ca"y I||UStI‘atIng

can show that the number of distinct projection planes gen-Strong” glass-former behavior. Three new cases will now
erated this way is given by the expression be examined. These correspond respectively to the following

three assignments, in suitable reduced energy units:
2P-2(D—-1)!

m (21]) ¢1(X’Y):X+y+06(x_y+005)3

—(x—y+0.092-0.11(x—y+1.11),
(3.2

Bo(X,Y)=3(Xx+Yy)+1.2x—y+0.053— (x—y+0.05?2

+0.15x+y)(x—y+1)*—0.1Ux—y+1.11),
(3.3

This equals 7028 736 for the modd3t= 14 example illus-
trated in Fig. 1.

Ill. HYPERCUBE INTERACTIONS

Calorimetric measurements on a wide variety of glass-
forming substances indicate that the vibrational heat capaci-
ties of the crystal and of the amorphous glass states are ap-
proximately equal [10,19-2]1. Vibrational degrees of
freedom with high frequencies will manifest considerable —0.1Ux—y+1.11). (3.9
guantum effects, especially at low temperature. But because
these effects appear to be nearly identical in crystalline andhe ground statéowest potential energyfor each of these
amorphous phases, they can be dropped in calculation of ti&ses occurs at the square vertex
influence of temperature on inherent-structure basin occupa-
tion. This influence is the objective of the present class of x=-1,
hypercube models, for which classical statistical mechanics (3.5
is now appropriate, and only the potential energies of the y=0.
inherent structures themselves are relevant.

The large number of available plane projections, Eq.
(2.11), offers a simplifying strategy. We choose that basis
pair 7, 7, which comes closest statistically to having identi-
cal potential energies for all inherent structures that have a IV. NUMERICAL RESULTS

common projection locatiory. Then assuming that this re- | ot 7% gtand for reduced temperature. The configurational

quirement_has been met to a satisf_actory level of preci_sior\:,ree energyF (T*) for the hypercube model arises from the
the potential energy may be approximately expressed simpligjioing ‘minimization with respect tox and y over the

as square(2.9):

da(X,y)=x+y+(x—y+0.1)%— (x—y+0.1)2

Consequently, the ground state is nondegenerate, and corre-
sponds to the structurally perfect crystal.

Da(xy), (3.1 F(T*)/IDT* =min[ (X, Y)/T* —w(x,y)].  (4.1)
(%)
in other words as just a function gfandy. The factorD has

been included to account for the fact thébody potential ~Locating the position of the minimum, or minima, %

energies are extensive quantitié®., proportional toN or ~ varies is a simple numerical task for each of the three cases

equivalently toD), so thatg(x,y) is intensive. defined above, Eq$3.2), (3.3), and(3.4). In the event that
The remaining two variables andy should be regarded two (or more local minima were to be found at sonf¢,

as measures of the amount and kind of disorder that i§1e one with the lowefor lowes} F of course would corre-

present in the many-particle system. Disorder in the crystalspond to the thermodynamically stable phase, the (hter

line state alone takes many forms, including vacancies, intefnetastable phats.

stitials, orientational and conformational defects, disloca- Numerical analysis reveals that the three cases under

tions, stacking faults, and grain boundaries. Liquid andPresent consideration share several qualitative attributes.

amorphous solid states likewise must display disorder diverTwo local free energy minima exist at low*, the more

sity. Consequently, it is reasonable to suppose that at leastable one of which emerges from the vertes) as T*

two “disorder parameters” are required to generate a unifiedncreases above absolute zero. However, above a melting

description of crystalline and amorphous phases. At thigemperatureTy, the other local minimum yields the lower

crude level of description the crystalline solid on the onefree energy, and so can be identified as the “liquid.” The

hand, and the liquid and glass on the other hand, could bmetastable “crystal” minimum persists abovi, until it
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TABLE I. Properties calculated for the hypercube model with

the three interaction choices. 12— ' ' ' ' '
Case Strong Fragile Degenerate 08l ¢ i
T 6.686 2 7.6970 7.0148 L 1
TS 8.642 10.042 9.232 04 L |
(AW) 1y 0.344 07 0.30103 0.34382
(Ciq/Cem 0.70 1.83 0.69 T C 1
by(T*=0) -1.4601 -5.1655 -1.2142 y 00 -
wy(T*=0) 0 0 0.2678 | |
bo(T*=0) —~3.4169 ~-5.9314 —-3.5390
W (T* =0) 0 0 0 04 7
vanishes at a higher finite instability temperatdig. For 081 ]
T*>T; only the liqguid minimum exists, and its location r ]
approaches=y=0 asT* approaches infinity. Table | col- 4.2 T Y I S
lects the computed values dff,, T*, and several other -tz 08 04 00 04 08 12
guantities to be discussed below for each of the three inter- X

actions. FIG. 3. Crystal and liquid paths in the.y) square for interac-
Figures 2, 3, and 4, show the paths traced by the freggn choiceq,. The notation is the same as that used in Fig. 2.
energy minima as temperature varies, for each of the three

cases. The respective thermodynamic melting points arg
graphically identified by pairs of small open circles, between
which the system discontinuously jumps upon passing th
melting-freezing first-order phase transition. The crystal
branch(cr) behaves similarly for all three cases, emanatingtur
from thex= —1, y=0 square vertex and moving diagonally
upward nearly along a side of the squareTdsrises from

he potential energies of these ideal glass stafggT™

=0), along with the corresponding ideal crystal potential
nergiesg.(T*=0), appear in Table I.

Case 3 presents a glass-state anomaly. Its zero tempera-

e limit lies along a square edge, at position

zero. And in all three cases the liguilit) path is well sepa- x=-0.227017,
rated in the square from that of the crystal, indicating clear (4.2)
structural distinctiveness for the two phases. y=—0.772983.

The liquid-phase paths for casegstrong and 2(fragile),
Figs. 2 and 3, respectively, are qualitatively similar thoughConsequently, this state is configurationally degenerate. The
clearly differing in shape detail. Both begin at vertex0,  extent of this degeneracy is measured by the valwe atfthe
y=—1 atT*=0 as nondegeneratgero entropy glasses. square-side positioit4.2), and is listed in Table | as the
quantitywy(T*=0).

1.2 — . e : .
| | 1.2 —r— —— . .
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0.8} . 0
L i 08 _
04+ - i i
c 04| ]
i ] C
y 00} - ] )
L i y 00 -
04 F - ] ]
L il 04 .
0.8 . i il
L i 08 _
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FIG. 2. Paths traced out in tHay) square for the crystdkr) X

and liquid (liq) phases for interaction choigg,. The arrows indi- FIG. 4. Crystal and liquid paths in the,y) square for interac-
cate the direction of increasing temperature, and open circles locat®n choice ¢5. The notation is the same as that used in Figs. 2
T}, the thermodynamic melting-freezing transition. and 3.
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FIG. 5. Heat capacity curves for interaction choige. The FIG. 7. Heat capacity curves for interaction choigg. The
arrow locates the equilibrium melting-freezing transition. arrow locates the equilibrium melting-freezing transition.

Figures 5, 6, and 7 show the curves for heat capaxity mal features, and are therefore outside the scope of the
=dg¢/dT* calculated for the three cases, with distinct present paper. However, the reader should keep in mind that
branches for the crystal and the liquid phases.TAsap-  a ‘“realistic” glass transition would terminate a liquid-branch
proachesT? from below, the crystal heat capacity for all configurational heat capacity ZI; , which thereupon sub-
three cases diverges to infini(gne can show that these are stantially vanishes at lowér*. Analogously, one must real-
inverse-square-root singularitiesThe roughly comparable istically expect a superheated crystalline phase kinetically to
heat capacities for crystal and liquid in case 1 merit the clasmelt well before reaching its instability temperatdrg .
sification “strong,” while the large difference between them  All three crystal heat capacity curves, and the liquid
in case 2(particularly belowTy,) justifies the label “frag- curves for cases 1 and 2, vanish exponentiallyTasap-
ile.” On this basis the “degenerate” case(Big. 7) would proaches zero. Once again the “degenerate” case 3 is
also be classified as strong. anomalous; its liquid-branch configurational heat capacity is

All numerical results displayed in Figs. 2—7 assume thatinear inT* in the low-temperature limit. By using low-order
local equilibration in the(x,y) space for location of free en- expansions fow(x,y) and ¢3(x,y) in the vicinity of posi-
ergy minima is operative. In the case of real glass-formingion (4.2), one can show
substances this equilibration becomes kinetically arrested at
and below a glass transition temperatiifg, C3(T*)=0.05134* +O(T*?). (4.9

0<T3<T§. (4.3 Such linear dependence is reminiscent of that observed in

low-temperature amorphous solids, and associated with

Kinetics of configurational transitions are an attribute of thequantum mechanical two-level tunneling degrees of freedom
hypercube models that is logically independent of the ther{22 23. However, the present example is quite different,

arising as it does in a classical statistical mechanical setting.

07| i In view of the fact that a positive-temperature glass transition
: would preempt direct calorimetric observation of a linear
heat capacity of typ€4.4), it will be a substantial challenge
06 ] to determine if any real substances fall into our “degener-
ate” glass category.
> 0.5 .
§ 04l i V. CONCLUSIONS AND DISCUSSION
o 0.
% The three interaction choices examined in this paper, Egs.
£ 03 . (3.2—(3.4), supplementing the two cases previously studied
[7,8], demonstrate that the hypercube model possesses con-
02 - siderable diversity in the thermodynamic behavior it can dis-
play. In particular, it is now clear that insofar as heat capac-
0.1 - — ity is concerned, the model can span the full range between
“strong” and “fragile” extremes by relatively simple alter-
0 ation in the interaction functiomp(x,y). This flexibility in
o 2 4 6 8 10 12 14 16 behavior is sufficient in fact to have produced theoretically a
Temperature third type of glass former, the “degenerate” type exempli-
fied by ¢5(x,y), Eq.(3.4).
FIG. 6. Heat capacity curves for interaction choi¢g. The Some glass-forming substances exhibit crystal polymor-

arrow locates the equilibrium melting-freezing transition. phism. Silicon dioxide (Si¢) is a well-known example
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[24,25, with quartz, cristobalite, tridymite, coesite, and particles, and the parametarthat measures the number of
stishovite predominating in distinct temperature-pressure redistinct inherent structures. Recently,has been estimated
gimes. An adroit choice of interaction functioth(x,y) [27] for the fragile glass former prototype ortho-terphenyl
should allow the hypercube model also to possess two ofOTP), using accurate calorimetric data for that substance
more low-temperature “crystal” phases, each stable in som§10], with the result:
temperature interval below the melting pointTd}. For ex-
ample, their individual paths in the fundamentaly) square a(OTP)=13.14. (5.2
could emanate from distinct vertices of the squareTas
increases from absolute zero.

The three _ex.an."nples studied in_the present paper seem to D/N=18.96. (5.2
be more realistic in at least one important respect than the

examples that were presented in R¢#.and[8]. One can 14 the extent that the “fragile” cased(,) is a reasonable

see from entries in Table | that the rafld/T7, measuring  gatistical model for OTP, this becomes its dimension assign-
the maximum possible extent of crystal superheating is closg,ent.
to 1.3 for each of the present cases. By contrast, the corre- istorically, one of the prominent concepts in glass sci-
sponding ratios in Ref4.7] and[8] were approximately 2.3 ence concerns the second-order “ideal glass transition” at
and_l.?, respectively. To stress a previous point, flexibility ingome positive temperaturE: less than the observed glass
choice of$(x,y) beyond that already exercised should per-yansition temperaturg28]. This is the point hypothetically
mit T;f/T;*n to be reduc_ed even further toward unity, should 3¢ \yhich cooling of an equilibrated, supercooled liquid
experimental observation so dictate. would attain substantially vanishing configurational entropy.
One obvious, but benign, shortcoming of the hypercuberhe concept seems to be especially attractive for fragile glass
model examples as thus far implemented concerns their bgormers(such as OTPbecause of near coincidence between
havior at the thermodynamic melting poifif;,. This is @  the calorimetric Kauzmann temperature and the apparent di-
first-order phase transition that should permit, in principle,vergence temperature of shear viscosity and of mean struc-
coexistence of the two phases in arbitrary relative amountgyral relaxation time[3]. However, none of the hypercube
without changing the free energinterfacial terms are insig- models previously investigatdd,8] or examined in this pa-
nificant in the present context that only concerns the largeper exhibit a second-order ideal glass transition. Indeed, gen-
system limi}. This implies that afl};, some continuous path eral counterarguments exist against such a possitpiigy.
must exist in the(x,y) plane connecting the pure-phase loca-Nevertheless, it is legitimate to ask whether the hypercube
tions (pairs of open circles in Figs. 2, 3, angl @long which  model is capablén principle of producing a second-order
the free energy is invariant. Hypercube model cases exanideal glass transition in its supercooled liquid phase, and if so
ined thus far do not show this behavior, a shortcoming thaivhat are the corresponding requirements on the interaction
can be patched up “after the fact” by redefining(x,y) function ¢(x,y). It is not appropriate to pursue this point in
appropriately within a domain that exists betwef@md is  great detail here, but suffice it to say that such transitions can
tangent to, at thd}, points the phase paths already traced be produced ifp(x,y) has a bounded logarithmic singularity
out. The correspondingly modifieg(x,y) should be con- (of typezin2z) located at the liquid-state square vertex.
tinuous within thex,y) square. This posterioriprocedure is Finally, kinetic properties of the hypercube model deserve
analogous to the Maxwell double tangent construcf®®  mention in passing. One approach involves development of a
that identifies liquid-vapor coexistence regions for equationg-okker-Planck equation in order-paramefey) space[7],
of state of the van der Waals type. and its extension to incorporate time-lag phenomggia
Equation (2.3) above presented the formal relation be- These formalisms remain largely unexplored at present, and
tween the hypercube dimensi@nfor a given numbeN of  may be productive directions for future work.

Consequently, Eq2.3) requires
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